

I. Datos Generales

Nombre: Diseño experimental y análisis de datos para

gestión de los recursos naturales I

Sigla: RN0007

Créditos: 3

Horas semanales: 3 presenciales, 6 de trabajo independiente

Requisitos: MA1210
Correquisitos: No tiene
Período: II-2014
Tipo: Propio

Ubicación en el plan de estudios: 3^{er} año

Profesor: Melvin Cartín Núñez, MSc.

Correo electrónico: melvin.cartin@ucr.ac.cr

Horas consulta: A convenir

II. Descripción: El curso pretende dar al estudiante herramientas básicas para el análisis de datos ecológicos y ambientales que permitan facilitar la toma de decisiones en procesos de gestión. Sin embargo, más que el dominio de técnicas numéricas e informáticas, se espera que el estudiante sea capaz de entender y manejar apropiadamente los diferentes tipos de datos relacionados con el uso, aprovechamiento y planificación sostenible de recursos naturales. Para lograr lo anterior, durante el curso se hará un especial énfasis en la toma de datos y el diseño experimental, así como en la interpretación de resultados.

III. Objetivos/ Propósitos

Con este curso se espera que el estudiante sea capaz de:

- Reconocer la importancia del manejo apropiado de datos en la gestión de los recursos naturales y sus aplicaciones en la toma de decisiones.
- Comprender los conceptos básicos necesarios para la correcta interpretación numérica de los datos ambientales.
- Aprovechar los conocimientos adquiridos en el diseño de metodologías que le permitan tomar y analizar datos en la gestión de recursos.
- Aplicar las técnicas aprendidas durante el desarrollo del curso en el análisis de casos simulados o reales durante su desempeño profesional.

 Presentar información en forma clara y ordenada cuando se trate de rendir informes y/o publicar resultados.

IV. Contenidos

1. Introducción

- Introducción
- Tipos de datos biológicos.
- Población y muestra.
- Muestreo aleatorio.
- Parámetros y estadísticos.

2. Principios de diseño experimental

- El método científico
- Definición del problema.
- Planeamiento y recolección de los datos.
- Teorema del límite central

3. Obtención y tipos de datos

- Definición de variables.
- Tipos de variables.
- Tipos de estudio.

4. Elaboración, presentación y análisis de datos

- Tabulación de datos.
- Texto.
- Cuadros estadísticos.
- Gráficos estadísticos.
- Algunos tipos de gráficos.

5. Análisis descriptivo: Medidas de tendencia central

- Moda.
- Mediana.
- Promedio o media aritmética.

6. Análisis descriptivo: Medidas de dispersión y variabilidad

- Ámbito o recorrido.
- Varianza y desviación estándar.
- Coeficiente de variación.
- Índices de diversidad.

7. Asociación o relación entre dos variables

- Asociación o relación.
- Correlación lineal.
- Regresión lineal.

8. Probabilidad

- Concepto.
- Probabilidad y estadística.
- Probabilidad de eventos.
- Cálculo y uso de proporciones.

9. Contraste o prueba de hipótesis

- Elementos de una prueba estadística.
- Tipos de error.
- Nivel de significancia.

10. Hipótesis con una sola muestra

- Prueba "t de student".
- Prueba de bondad de ajuste.

11. Hipótesis con dos muestras o dos grupos relacionados

- Diferencia entre dos promedios.
- Muestras pareadas.
- Coeficiente de contingencia.
- Asociación estadística.

12. Hipótesis con más de dos muestras o más de dos variables

- Análisis de variancia (ANDEVA)
- Correlación lineal y Regresión múltiple

13. Interpretación y presentación de resultados

- Interpretación de los resultados estadísticos
- Presentación gráfica de resultados
- Redacción de resultados de pruebas estadísticas para publicaciones científicas e informes técnicos.

V. Metodología

El curso consta de sesiones presenciales de aproximadamente tres horas semanales. Las mismas se desarrollarán a partir de clases magistrales pero se espera la participación activa de los estudiantes, quienes en algunos casos deberán dirigir parte de la clase. Se espera asimismo la asignación de lecturas afines a los contenidos del curso con el propósito de propiciar la discusión entre los participantes. De ser posible, se harán una o dos prácticas de campo donde los estudiantes puedan poner en práctica destrezas relacionadas con el diseño experimental.

VI. Evaluación

Ítem a evaluar	Valor porcentual	
Exámenes parciales (2)	60	
Quices (con o sin previo aviso)	20	
Tareas	10	
Investigación bibliográfica y presentación oral	10	
Total	100	

Observaciones

La asistencia a clases no es obligatoria pero es altamente recomendable, debido a la realización de diferentes evaluaciones (quices, exposiciones, etc.). Quien no esté presente al momento de realizar alguna evaluación, sea por ausencia, llegada tardía o salida anticipada, tendrá un cero ("0") en la nota de dicha evaluación. En caso de realizarse alguna gira, esta tendría carácter de laboratorio por lo que su asistencia es obligatoria.

VII. Aula virtual

Para este curso se contará con un aula virtual donde podrán encontrar diversos recursos de apoyo como cronograma de actividades, avisos, tareas, ejercicios de práctica, lecturas asignadas y foros participativos entre otros. Para ingresar al aula deberán registrarse primero en la página de mediación virtual: mediacionvirtual.ucr.ac.cr. Una vez registrados, podrán buscar el curso "Diseño experimental y análisis de datos para gestión de los recursos naturales I" y entrar al mismo con la clave de acceso que el docente les dará al inicio del ciclo lectivo. Esto lo deberán hacer durante las semanas 1 y 2 pues de lo contrario ya no podrán matricularse con posterioridad.

Dada la naturaleza y propósito del aula virtual, su matrícula y participación en ella es <u>obligatoria</u>. Cada participante deberá revisar la página al menos dos veces por semana. En consecuencia con las políticas ambientales de la institución, salvo que el docente indique otra cosa, los trabajos, tareas y demás actividades que incluyan la presentación de algún documento escrito deberán entregarse en la plataforma de mediación virtual. No se aceptarán trabajos presentados en ningún otro medio.

VIII. Bibliografía recomendada

Carrascal, U. 2007. Estadística Descriptiva con Microsoft Excel 2007, Alfaomega. México. 215 p.

Chaves, O. 2009. Métodos estadísticos para las ciencias naturales. EUNED. San José, Costa Rica. 190 p.

Gómez, M. 1998. Elementos de estadística descriptiva. EUNED. San José, Costa Rica. 543 p.

Gutiérrez, E. 1995. Métodos estadísticos para las ciencias biológicas. EUNA. Heredia, Costa Rica. 175 p.

Moya, L. 2005. Introducción a la estadística de la salud. EUCR. San José, Costa Rica. 330 p.

Zar, J. 1999. Biostatistical Analysis. 4 ed. Prentice-Hall. Nueva Jersey. 663 p.

IX. Cronograma

Semana	Fecha	Contenido a desarrollar
1	11 de agosto	Introducción
2	18 de agosto	Principios de diseño experimental
3	25 de agosto	Obtención y tipos de datos
4	1 de setiembre	Elaboración, presentación y análisis de datos
5	8 de setiembre	Análisis descriptivo: Medidas de tendencia central (Exposición 1)
6	15 de setiembre	Feriado
7	22 de setiembre	Análisis descriptivo: Medidas de dispersión y variabilidad (Exposición 2)
8	29 de setiembre	Asociación o relación entre dos variables (Exposición 3)
9	6 de octubre	I Parcial
10	13 de octubre	Probabilidad (Exposición 4)
11	20 de octubre	Contraste o prueba de hipótesis (Exposición 5)
12	27 de octubre	Hipótesis con una sola muestra (Exposición 6)
13	3 de noviembre	Hipótesis con dos muestras o dos grupos relacionados (Exposición 7)
14	10 de noviembre	Hipótesis con más de dos muestras o más de dos variables
15	17 de noviembre	Interpretación y presentación de resultados (Exposición 8)
16	24 de noviembre	Nivelación y/o repaso
17	1 de diciembre	II Parcial
18	8 de diciembre	Ampliación

Fechas tentativas para la gira a Ostional:

18-20 de octubre (sujeta a ser aprobada por parte de la Administración)