Bach. y Lic. en Laboratorista Químico

PROGRAMA CURSO: LABORATORIO DE TÉCNICAS INSTRUMENTALES DE ANÁLISIS II Semestre, 2014

Datos Generales

Sigla: LQ-0003

Nombre del curso: Laboratorio de Técnicas Instrumentales de Análisis

Tipo de curso: Práctico Número de créditos: 2

Número de horas semanales presenciales: 4

Número de horas semanales de trabajo independiente del estudiante: 2

Requisitos: QU-0200, QU-0201

Correquisitos: LQ-0002

Ubicación en el plan de estudio: IV Ciclo

Horario del curso: Martes (G02) 13:00 a 16:50 y Viernes (G01) 8:00 a 11:50

Suficiencia: No Tutoría: No

Datos del Profesor

Nombre: M.Ing. Esteban Pérez López
Correo Electrónico: <u>estebanperezlopez@gmail.com</u>

Horario de Consulta: Martes 10:00 a 11:50 y Viernes 13:00 a 14:50

1. Descripción del curso

El curso es práctico y pretende correlacionar la importancia de las técnicas instrumentales de análisis presentes en el laboratorio, con el diario vivir de la industria en nuestro país en cuanto a venta de servicios, control de calidad e investigación.

El trabajo en el laboratorio sería individual, a menos que por la complejidad o falta de equipo en una práctica determinada se realice en parejas o por grupo. El curso será tratado de forma paralela a la teoría, donde cada unidad tiene su práctica. Para consulta se anota alguna bibliografía que puede ayudar en cada una de las unidades a desarrollar.

2. Objetivo General

Establecer la relación del trabajo realizado semana a semana en el laboratorio, con la vida diaria en los diferentes tipos de industria de nuestro país, con respecto a la importancia de las técnicas instrumentales de análisis para el control de calidad, la investigación y el desarrollo de los productos manufacturados en la industria actual.

3. Objetivos específicos

- a. Aplicar diferentes métodos de análisis cuantitativos, empleando técnicas instrumentales analíticas.
- b. Identificar los principales componentes de los instrumentos analíticos y sus respectivas funciones.
- c. Identificar las ventajas y las limitaciones de algunos métodos de análisis en los diferentes instrumentos analíticos.
- d. Familiarizar a los estudiantes con diversas técnicas instrumentales para análisis químicos, mediante el desarrollo de prácticas actualizadas.
- e. Determinar mediante análisis estadístico, la confiabilidad en los resultados, del trabajo realizado en cada una de las prácticas de laboratorio por parte de los estudiantes.
- f. Crear conciencia en el estudiante sobre la importancia de las Técnicas Instrumentales de análisis en el diario vivir de la industria nacional.

4. Contenidos

Se desarrollará en forma práctica, entre otras técnicas: determinación de densidad (por medio de picnómetro, y el densímetro.), espectrofotometría ultravioleta y visible, absorción atómica, fotometría de llama, conductimetría, refractometría, polarimetría, cromatografía de gases, cromatografía de líquidos de alta resolución (HPLC) y cromatografía de iones.

5. Metodología

El curso es práctico, con instrucciones explicativas y evaluación de la práctica antes de cada sesión sobre la forma de trabajo y el desarrollo de cada una de las prácticas.

Se desarrollan diversas prácticas a nivel instrumental, con temas de alto interés y aplicación analítica, para el desempeño eficiente de los estudiantes, con miras a formar futuros profesionales que se desenvuelvan a cabalidad en los diferentes ramos del análisis instrumental.

En su mayoría, los análisis se desarrollan empleando curvas de calibración de al menos 6 puntos, con sustancias patrón. Se empleará como guía principal el Manual de Laboratorio de Técnicas Instrumentales de Análisis 2014, facilitado por el profesor.

6. Evaluación

Descripción	Porcentaje
Informes de laboratorio	30%
Pruebas cortas	30%
Trabajo en el laboratorio y libreta	10%
Trabajo Final (Exposición)	10%
Examen Final	20%

Total: 100%

Consideraciones sobre la evaluación

- a. Es obligatorio asistir a todas las sesiones de laboratorio.
- b. No habrá reposición de prácticas de laboratorio. (solo en casos calificados y bien justificados.)
- c. Los quices de laboratorio se realizarán al inicio de cada práctica y no se reponen en caso de llegada tardía.
- d. Cada estudiante debe presentar un informe de la práctica realizada en la siguiente sesión de laboratorio. En caso de no traer el reporte, no se acepta en otra fecha y se aplicará la nota mínima de 0.0 (cero).
- e. Es obligación del alumno(a), traer al laboratorio, gabacha, anteojos, encendedor, papel absorbente, jabón líquido, limpiones, etiquetas, marcadores y cualquier otro material que se le solicite para la realización de las prácticas de laboratorio.
- f. QUEDA TERMINANTEMENTE PROHIBIDO EL USO DE CELULARES ENCENDIDOS DENTRO DEL LABORATORIO, ASÍ COMO COMER, FUMAR Y RECIBIR VISITAS SIN LA AUTORIZACIÓN DEL PROFESOR.

Instrucciones generales para la confección de la libreta, el informe de laboratorio y otros.

Generalidades.

El alumno(a), debe estudiar la teoría relacionada con el experimento que va a realizar, con el objetivo de llegar a comprender los principios básicos del método de análisis, así mismo debe estudiar las técnicas y el instrumental relacionado con cada experimento.

Libreta de laboratorio.

- El cuaderno será revisado por el profesor al inicio de cada práctica.
- Si la libreta no está completa, cuadros y demás, se le aplicará una disminución en la nota de trabajo de ese día y no podrá realizar la práctica hasta que complete la libreta.
- Todos los datos, cuadros y demás, deben estar anotados con bolígrafo.
- Las tres primeras tres hojas del cuaderno deben ser destinadas a la portada, declaración jurada e índice.
- Todas las hojas de la libreta deben estar numeradas.

Para cada práctica debe anotarse lo siguiente:

- Título de la práctica
- Fecha de realización
- Procedimiento de análisis. Escrito en forma resumida, tratamiento de la muestra y montaje.
- Datos preliminares. Deben incluirse fórmulas, ecuaciones, constantes y cualquier otro dato necesario para el buen desarrollo de la práctica.
- Cuadro de datos experimentales. En estos deben aparecer el título correspondiente, las unidades e incertidumbre de cada una de las medidas realizadas.
- Cálculos: Se debe dejar un espacio prudente para que estos sean incluidos antes de iniciar la confección de la siguiente práctica.

Informe de la práctica.

El informe debe redactarse en pasado y en forma impersonal y debe ser entregado en la siguiente sesión de laboratorio. Informes incompletos se califican con nota 50. No se reciben informes en fechas posteriores a la establecida.

Las partes que debe presentar el informe son las siguientes (tipo artículo científico):

- **Presentación**: Debe aparecer el nombre del autor, carné, título de la práctica, fecha de realización, unidad académica a la que pertenece, nombre del profesor.
- **Resumen (5%)**: No más de diez líneas, que indique en qué consistió la práctica, mencionando los objetivos alcanzados y la técnica empleada en la misma.
- Palabras Clave
- Introducción (5%): Reseña de la técnica en estudio e importancia del análisis realizado, para la industria actual.
- Marco Teórico (10%): Sustento bibliográfico de la técnica en estudio y temas relacionados con la práctica realizada que generen valor al informe.
- **Metodología (5%):** Esquema de procedimiento, datos preliminares, materiales, reactivos empleados y su concentración, equipos, etc. Escrito en prosa.
- Datos experimentales (5%): Se deben presentar en cuadros con sus respectivos números arábigos y título respectivo. Los datos deben contener las incertidumbres respectivas.
- **Resultados (15%)**: Con cuadros, gráficos; y se hace mención del tipo de muestra analizada, se reporta el promedio de los tres resultados con su incertidumbre y desvío relativo en ppmil. (según sea el caso, puede usarse la mediana, con la respectiva autorización del profesor).
 - **Discusión (25%)**: Discutir sobre los resultados obtenidos, si son confiables o no, y por qué lo considera así, presentar posibles fuentes de error. Justificar a través de esas fuentes, las diferencias obtenidas en los resultados. Brindar recomendaciones para eliminar las fuentes de error.
- Conclusiones (20%): Las conclusiones pueden ser personales, pero pueden complementarse con la bibliografía disponible sobre el tema tratado en la práctica, deben ser puntuales y enfocadas en los resultados y en la técnica analítica empleada. Mínimo 10 conclusiones.
- **Bibliografía (5%)**: Se deben incluir como mínimo cinco referencias.
 - Apéndice (5%): Debe incluir muestras de todos los cálculos. Además figuras (gráficos) si los hay, deben de ponerse con sus respectivos números (arábigos), con sus títulos e incertidumbre. Todos los cuadros y figuras deben aparecer mencionados en el texto.

<u>Trabajo Final (Exposición grupal):</u>

Seleccionar una de las técnicas vistas en el laboratorio e investigar sobre la importancia de la técnica para la industria de nuestro país, e incluir:

- Reseña del fundamento de la técnica
- Cuidados operativos de la técnica

- Mantenimiento preventivo adecuado de la técnica
- Ventajas de la técnica
- Limitaciones de la técnica
- Investigar sobre las características (físicas, químicas, etc) del analito para ser determinado cuantitativamente por esa técnica.
- Mencionar los diferentes tipos de industrias en las que se utiliza la técnica en nuestro país (ej: químico-clínico, biotecnológico, agroindustria, siliconas, plásticos, pinturas, alimentos, farmacéutico, veterinario, etc.).
- Tres aplicaciones específicas (ya sea venta de servicios, control de calidad o investigación), en cada tipo de industria en la que se utiliza. (ej: análisis cuali-cuantitativo de fitofármacos en plantas medicinales).
- Averiguar el nombre de al menos diez empresas, instituciones, institutos de investigación u otros (sean públicos o privados) en los que se emplee la técnica instrumental en Costa Rica.
- Averiguar el costo aproximado del instrumento y justificar con razones de peso la importancia de la inversión inicial y de mantenimiento del equipo, asumiendo ustedes la posición de jefe de laboratorio de "X" industria que lo utiliza.

7. Cronograma

1	11 al <mark>15</mark> Agosto	Instrucciones generales y entrega de gavetas grupo martes. <i>FERIADO</i> grupo viernes. PRÁCTICA 1. Conductimetría, se realizará entre semana 10 y semana 15.	
2	18 al 22 Agosto	PRÁCTICA 2. Densidad en bebidas, grupo martes. Instrucciones generales y entrega de gavetas grupo viernes.	
3	25 al 29 Agosto	Libre grupo martes. Nivelación PRÁCTICA 2. Densidad en bebidas, grupo viernes	
4	01 al 05 Setiembre	PRÁCTICA 3. Cianocobalamina por Espectrofotometría Visible	
5	08 al 12 Setiembre	PRÁCTICA 4. Teofilina por Espectrofotometría Ultravioleta	
6	15 al 19 Setiembre	PRÁCTICA 5. Glicerina por Refractometría	
7	22 al 26 Setiembre	PRÁCTICA 6. Azúcares por Polarimetría	
8	29 al 03 Octubre	PRÁCTICA 7. Potasio por Absorción Atómica	
9	06 al 10 Octubre	PRÁCTICA 8. Sodio por Emisión Atómica	
10	13 al 17 Octubre	PRÁCTICA 9. Etanol por Cromatografía de Gases	
11	20 al 24 Octubre	PRÁCTICA 10. Isopropanol por Cromatografía de Gases	
12	27 al 31 Octubre	PRÁCTICA 11. Cafeína por HPLC	
13	03 al 07 Noviembre	PRÁCTICA 12. Acetaminofén por HPLC	

- 14 10 al 14 Noviembre PRÁCTICA 13. Aniones por cromatografía de iones
- 15 17 al 21 Noviembre PRÁCTICA 14. Cationes por cromatografía de iones
- 16 24 al 28 Noviembre Exposición Final y devolución de gavetas
- 17 01 al 05 Diciembre Examen, el 02 de diciembre a la 1 pm

8. Bibliografía

- Skoog D.A, Holler F.J y Nieman T.A. <u>Principios de Análisis Instrumental.</u> 5^{ta} edición. Editorial Mc Graw-Hill. Madrid. 2001.
- Willard Meritt, Dean y Settle. <u>Métodos Instrumentales de Análisis</u>. Editorial Iberoamericana. México. 1991.
- Kenneth A Rubinson, Judith F Rubinson. <u>Análisis Instrumental.</u> Editorial Pearson educación S.A. Madrid. 2001
- Harris, Daniel C. <u>Análisis Químico Cuantitativo.</u> Editorial Iberoamericana. México. 1992.
- Schenk G.H, Hahn R.B, Hartkopf A.V. <u>Química Analítica Cuantitativo</u>. Editorial Continental. México. 1984.

Otras referencias

- The United States Pharmacopeia Convention. USP 34 NF 29: Farmacopea de los Estados Unidos de América. Rockville, Maryland: The United States Pharmacopeial Convention. 2011.
- Manual de Laboratorio de Técnicas Instrumentales de Análisis. Universidad de Costa Rica,
 Sede de Occidente, Recinto de Grecia. 2014.