4-90

Introducción a la Variable Compleja MA-610

réditos 5

prario m-16 a 18 horas

s- 9 a 12 horas

rerrequisitos: MA-504 y MA-507.

El curso MA-610, Introducción a la Variable Compleja introuce a los estudiantes al facinante mundo del número complejo unto con algunas de sus aplicaciones.

Objetivos Generales

- 1.- Desarrollar una discusión amplia sobre la resolución de ecuaciones algebraicas.
- 2.- Capacitar al estudiante en el manejo del cálculo de una variable compleja.

Objetivos Específicos

- 1.- El estudiante debe ser capaz de resolver en forma general ecuaciones de primer grado hasta cuarto grado.
- 2.- Conocer los conceptos de convergencia de sucesiones, límite de sucesiones y funciones, continuidad en C.
- 3.- Conocer las propiedades de las funciones Log, Exp. en C/
- 4.- El estudiante debe ser capaz de distinguir la diferenciabilidad de una función como función de dos variables reales y como función de variable compleja.
- 5.- Capacidad para desarrollar una función analítica en una región como desarrollo de Taylor.
- 6.- Calcular integrales sobre curvas con el uso de residuos. Utilizar esto para el cálculo de Integrales Reales.

CONTENIDO

STRUCTURA ALGEBRAICA DE C

Definición y axiomas del campo C.
Conjugado de un número complejo y valor absoluto, propiedades.

Identidad de Lagrange. Representación geométrica de un número complejo. Ejercicios que conduzcan a lugares geométricos. Forma trigonometrica de un número complejo. Fórmula de Moivre. Calculo de raíces de números complejos. Polinomios. Cálculo de ceros, ecuaciones.

TOPOLOGIA DE C

Cerrados y abiertos. Funciones con valores complejos. Definición de límite. Comvergencia simple y uniforme.
continuidad de funciones con valores en C. Sucesiones y series
de números complejos. Series Absolutamente convergentes. Definición de límite superior y límite inferior. Criterios de con vergencia de una serie. Definición de distancia de un conjunto
en C. Teorema de la intersección de Cantor. Teorema de Bolzano
-Weierstrass. Curvas poligonales. El plano complejo extendido.
Proyección estereográfica.

DERIVACION

Definición de derivada en un punto. Propiedades de la derivación. Funciones analíticas. Propiedades de series depotencias. Función exponencial y logaritmica. Ecuaciones de Riemann y Cauchy. Funciones armónicas.

INTEGRACION

Integración a lo largo de una curva. Teoremas para funciones analíticas. Expanción de una función analítica por medio de una serie de Taylor. Teorema de los residuos de Cauchy.

EVALUACION

La evaluación consiste de 3 parciales (7 de Abril, 19 de Mayo, 30 de Junio). Además se le entregará a los estudiantes listas de ejercicios semanales de donde se extraerán los examenes en un 60%.

BIBLICGRAFIA

Ahlfors Lars V. Complex Analysis. McGraw Hill Book Company, Inc. New York, 1953.

Murray R Spiegel. Complex Variables. Schaum&'s Outline Series.

McGraw Hill Book Company. New York, 1964.

- sé I Nieto. <u>Funciones de Variable Compleja</u>. C.E.A., Washington, 1973
- thur A Hauser. Variable Compleja Fondo Educativo Interamericano, S.A. Colombia, 1973.
- el V Churchill. Complex Variables and Applications McGraww-Hill Book Company, U.S.A., 1984.
- 1. Apostol, <u>Analisis Matemático</u>, 2º Edición, Editorial Reverte, S.A., España, 1977.

Los restantes libros xx en este tema se dejan a la iniciava y disponibilidad de encontrarlos de parte de los estudian-

Espero que esta aventura a traves del complejo mundo del mero complejo no nos acompleje para seguir investigando en mundo que nos rocea: las matemáticas.

Sergio Araya Rodríguez