

UNIVERSIDAD DE COSTA RICA ESCUELA DE MATEMÁTICA MA 1003 CÁLCULO 3

CARTA AL ESTUDIANTE

PRIMER CICLO DE 2012

Presentación

Este es un curso de cinco horas semanales, con un valor de cuatro créditos. Puede catalogarse como un curso de cálculo avanzado, en el que se extiende a varias variables, los conceptos de cálculos diferencial e integral estudiados en cursos anteriores, para que pueda aplicarlos oportunamente en el campo de la Ingeniería y la Química. Se hace además una introducción al Cálculo Vectorial, estudiando las integrales de línea y superficie y sus teoremas clásicos de Green, Stokes y Gauss.

Este documento le brinda la información general sobre los principales aspectos del curso que usted necesita para un desempeño adecuado en él. Le sugerimos leerlo detenidamente y consultar cualquier duda sobre la información que aquí se le brinda. Debe tener presente que el buen desarrollo de este curso es responsabilidad conjunta de su profesor y suya. Es importante que aproveche las clases y horas de consulta que están a su disposición, y que exista una buena disposición de su parte, tanto en actitud, como en tiempo de estudio.

Para tener éxito en el curso de Cálculo 3 se requiere de muchas horas de estudio, tanto para aprender conceptos, definiciones y teoremas, como para la solución de una buena cantidad de ejercicios. Además de las cinco horas de clase semanales, usted debe dedicar al menos unas diez horas adicionales de estudio para apropiarse de los conocimientos y desarrollar las habilidades que requiere este curso. Cualquier información importante del curso, materiales complementarios, listas de ejercicios recomendados, aulas y fechas de exámenes, se publicará en la página de MA-1003. Le recomendamos revisarla periódicamente.

Para el buen desempeño en el curso MA-1003 es necesario tener un buen dominio de los contenidos estudiados en los cursos MA-1001 y MA-1002. Si usted considera que tiene deficiencias en algunos de ellos, es importante que dedique tiempo adicional al estudio de esos conceptos, así como solicitarle a su profesor referencias bibliográficas para el repaso de algún tema.

Conjuntamente con la Vicerrectoría de Vida Estudiantil, se cuenta con los llamados estudiaderos, los cuales son atendidos por asistentes, quienes le ayudarán aclarándole las dudas que surjan mientras estudia. Para mayor información al respecto diríjase al CASE, ubicado en el segundo piso del edificio de Física y Matemática.

1. Objetivos Generales

- 1.1 Complementar la formación en geometría analítica, optimización y cálculo diferencial e integral de varias variables, haciendo énfasis en las interpretaciones geométricas en \Re^2 y \Re^3 .
- 1.2 Complementar la formación en Análisis Vectorial, estudiando las integrales de línea y superficie, y sus teoremas clásicos de Green, Stokes y Gauss.

2. Objetivos Específicos

- 2.1 Interpretar y manipular geométricamente ecuaciones algebraicas, sistemas de ecuaciones, ecuaciones vectoriales, intersecciones y proyecciones.
- 2.2 Aplicar correctamente la regla de la cadena generalizada a la derivación de funciones compuestas e implícitas y a otros problemas.
- 2.3 Determinar los extremos de funciones de dos o más variables, mediante el criterio del segundo diferencial.
- 2.4 Determinar los extremos de funciones de dos o más variables, sobre conjuntos abiertos y sobre conjuntos cerrados y acotados.
- 2.5 Determinar la naturaleza de un punto estacionario, por medio de los menores principales de la matriz hessiana.
- 2.6 Determinar, usando el método de Lagrange, los extremos de funciones de varias variables con restricciones de igualdad.
- 2.7 Comprender y aplicar las propiedades básicas del cálculo integral en dos y tres dimensiones, directamente o mediante una transformación de coordenadas.
- 2.8 Calcular la integral de campos escalares sobre regiones acotadas del plano y del espacio, tanto directamente, como utilizando cambios de variables.
- 2.9 Calcular integrales de línea y de superficie y aplicarlas a la resolución de problemas relacionados con los teoremas clásicos del análisis vectorial, el teorema de Green, el teorema de Stokes y el teorema de la divergencia de Gauss.

3. Programa

Capítulo 1: Superficies y funciones vectoriales de una variable real

- 1. Repaso de rectas y planos en el espacio, secciones cónicas, superficies cuadráticas.
- 2. Cilindros y conos oblicuos, superficies de revolución obtenidas al girar una curva plana o alabeada alrededor de un eje arbitrario.
- 3. Funciones vectoriales de una variable real y ecuaciones paramétricas. Curvas en el espacio. Límites y continuidad, derivadas e integrales. Vectores unitarios tangente, normal y binormal. Triedro intrínseco. Curvatura de una curva, radio de curvatura, círculo oscilador, torsión. Componentes tangencial y normal de la aceleración. Cur vas parametrizadas.

Capítulo 2: Derivación parcial y aplicaciones

- 1. Funciones de varias variables, campos escalares en dos y tres variables.
- 2. Límites y continuidad, derivadas parciales, incrementos y diferenciales. Regla de la cadena.
- 3. Derivadas de funciones definidas implícitamente por una ecuación o por un sistema de ecuaciones.
- 4. Derivadas direccionales y vector gradiente de un campo escalar, derivada direccional a lo largo de una curva. Interpretación geométrica.
- 5. Extremos de funciones de varias variables. Interpretación geométrica.
- 6. Criterio de la segunda derivada para funciones de dos variables.

- 7. Multiplicadores de Lagrange y problemas de extremo condicionado. Interpretación geométrica.
- 8. Clasificación de puntos estacionarios por el método de la fórmula de Taylor, diferenciales de segundo orden y por hessianos orlados.

Capítulo 3: Integrales múltiples

- 1. Funciones escalonadas y la integral sobre rectángulos, la integral doble de funciones continuas sobre rectángulos, propiedades y Teorema de Fubini.
- 2. Integrales sobre otras regiones, y acotadas de \Re^2 , cambio de variables lineales, coordenadas polares, elípticas y otras. Área y volumen mediante integrales dobles.
- 3. Aplicación de las integrales dobles a cálculo de masas, momentos, centros de masa y otros.
- 4. Integrales triples sobre cubos y otras regiones cerradas y acotadas en \Re^3 .
- 5. Cambios lineales de variables, coordenadas cilíndricas y esféricas. Integración múltiple sobre \Re^3 . Aplicaciones de integrales triples a masas, momentos y centros de masa.

Capítulo 4: Análisis Vectorial

- 1. Campos vectoriales. Integrales de línea. Independencia de la trayectoria.
- 2. Teorema de Green.
- 3. Área de una superficie.
- 4. Integrales de superficie.
- 5. Teorema de la divergencia de Gauss.
- 6. Teorema de Stokes.

4. Bibliografía

- 1. Acuña, O., Poltronieri J.: Ejercicios para Cálculo 3, Serie Cabécar. Editorial de la Universidad de Costa Rica, San Pedro (1998).
- 2. Apóstol, T.: Calculus. Segunda edición, Vol. I y II. Editorial Reverté, España (1980).
- 3. Curtis, P.: Cálculo con una introducción a vectores. Primera edición, Editorial Limusa, México (1979).
- 4. Demidovich, B.: Problemas y Ejercicios de Análisis Matemático. Editorial Paraninfo, Madrid (1982).
- 5. Demidovich, B.: 5000 Problemas de Análisis Matemático. Editorial Paraninfo, Madrid (1985).
- 6. Edwards, H. y David Penney: Cálculo con trascendentes tempranas. Editorial Pearson, México (2008).
- 7. Marsden, J., Tromba, A.: Cálculo Vectorial. Quinta edición, Pearson Educación, Madrid (2004).
- 8. Stewart, J.: Cálculo Multivariable. Cuarta edición, Thomson Learning, México, D.F. (2002).
- 9. Thomas, G.: Cálculo en Varias Variables. Decimosegunda edición. Pearson Educación, México, D.F. (2010).

5. Cronograma

SEMANA	FECHAS	TEMAS	OBSERVACIONES
1*	05 al 09 de marzo.	Repaso de geometría vectorial, secciones cónicas y superficies cuadráticas.	
2*	12 al 16 de marzo.	Cilindros y conos oblicuos, superficies de revolución alrededor de un eje arbitrario. Funciones vectoriales. Curvas en el espacio.	* Temas a evaluar en el Primer Parcial.
3*	19 al 23 de marzo.	Triedro intrínseco, curvatura, componentes tangencial y normal de la aceleración. Fun- ciones de varias variables. Teorema de la Función Implícita.	
4*	26 al 30 de marzo.	Derivadas direccionales y vector gradiente. Derivadas parciales. Regla de la Cadena. Derivada a lo largo de una curva.	
5	02 al 06 de abril.		Semana Santa
6**	09 al 13 de abril.	Repaso para el Primer Parcial. Extremos de funciones de varias variables.	Primer Parcial (14//04)
7**	16 al 20 de abril.	Criterio del discriminante para funciones de dos variables. Extremos condicionados y Multiplicadores de Lagrange.	Reposición I Parcial (05/05)
8**	23 al 27 de abril.	Diferenciales de segundo orden. Clasificación de puntos críticos por Fórmula de Taylor o por el método de la matriz hessiana.	
9**	30 de abril al 04 de mayo.	Integrales dobles sobre rectángulos y sobre regiones generales. Teoremas de Fubini.	** Temas a evaluar en el Segundo Parcial
10**	07 al 11 de mayo.	Cálculo de volúmenes y áreas mediante integrales dobles. Cambio de variable en integrales dobles.	
11**	14 al 18 de mayo.	Aplicaciones de las integrales dobles, masa, momento, centro de masa. Integrales triples.	
12**	21 al 25 de mayo.	Aplicación de integrales triples. Cambio de variable en integrales triples.	Segundo Parcial (02/06)
13***	28 de mayo 01 de junio.	Campos vectoriales. Integrales de línea. Independencia de trayectorias. Teorema de Green.	Reposición Segundo Par- cial (09/06)
14***	04 al 08 de junio.	Área de superficie. Integrales de superficie.	
15***	11 al 15 de junio.	Área de superficie. Integrales de superficie.	*** Temas a evaluar en el Tercer Parcial.
16***	18 al 22 de junio.	Teorema de la divergencia de Gauss. Teorema de Stokes.	
17***	25 al 29 de junio	Ejercicios.	Tercer Parcial (04/07)

6. Calendario provisional de exámenes (Consultar Página Oficial MA 1003)

EXAMEN	FECHA	HORA
I Examen Parcial	Sábado 14/04/12	13:00
Reposición I Examen Parcial	Sábado 05/05/12	13:00
II Examen Parcial	Sábado 02/06/12	08:00
Reposición II Examen Parcial	Sábado 09/06/12	13:00
III Examen Parcial	Sábado 04/07/12	08:00
Reposición III Examen Parcial	Miércoles 11/07/12	08:00
Ampliación y Suficiencia	Sábado 14/07/12	08:00

7. Evaluación

Según_Reglamento de Régimen Académico Estudiantil (aprobado en sesión 4632-03, 09-05-01. Publicado en La Gaceta Universitaria 03-2001, 25-05-01)

<u>ARTÍCULO 25.</u> La calificación final del curso se notifica a la Oficina de Registro e Información, en la escala de cero a diez, en enteros y fracciones de media unidad. La escala numérica tiene el siguiente significado:

9,5 y 10,0	Excelente	7,0	Suficiente
8,5 y 9,0	Muy bueno	6,0 y 6,5	Insuficiente, con derecho a prueba de ampliación
7,5 y 8,0	Bueno	Menores de 6,0	Insuficiente

La calificación final debe redondearse a la unidad o media unidad más próxima. En casos intermedios, es decir, cuando los decimales sean exactamente coma veinticinco (,25) o coma setenta y cinco (,75), deberá redondearse hacia la media unidad o unidad superior más próxima. La calificación final de siete (7,0) es la mínima para aprobar un curso.

La nota de aprovechamiento (NA) que el estudiante obtiene al finalizar el curso se calcula mediante la fórmula:

$$NA = (P_1 * 0.25 + P_2 * 0.35 + P_3 * 0.40)$$

donde:

- P_1 , P_2 y P_3 son las notas de los tres exámenes parciales respectivamente.
- Si NA≥6,75 el estudiante gana el curso con NA redondeada de acuerdo al Artículo 25.
- Si $5,75 \le NA < 6,75$ el estudiante tiene derecho a hacer el examen de ampliación (EA). Si $EA \ge 6,75$, el estudiante gana el curso con nota 7.0 y si EA < 6,75 al estudiante se le reporta la nota NA.

8. Varios

8.1 Ausencias a los exámenes.

- 8.1.1 En casos debidamente justificados, tales como enfermedad del estudiante (con justificación médica), o haber presentado dos exámenes el mismo día, o choque de exámenes (con constancia del coordinador respectivo), o la muerte de un pariente en primer grado de consanguinidad, o casos de giras (reportados por escrito) y con el visto bueno del órgano responsable, se le permitirá al estudiante reponer el examen durante el periodo lectivo.
- 8.1.2 En cualquier caso, se debe presentar los documentos probatorios a la coordinación de la respectiva sede regional, en los primeros tres días hábiles después de haberse realizado el examen. Al estudiante se le hará un examen de reposición en la fecha que se indica en el punto 6 de este documento.

8.2 Cambios de grupo.

8.2.1 De acuerdo con los artículos 41 a 50 de las Normas y Procedimientos de Matrícula (Resolución VVE-R-009-95), no se permiten cambios de grupo. Cada profesor debe velar para que esto se cumpla.

8.3 Faltas.

8.3.1 Es responsabilidad de los alumnos comunicar a la coordinación de este curso, la ausencia del profesor del grupo a lecciones o a horas de consulta.

8.4 Uso de calculadoras y celulares

8.4.1 No se permite el uso de calculadoras en los exámenes, ni el uso de celulares u otros dispositivos electrónicos en clase, sin la autorización del profesor.

8.5 Calificación de exámenes.

- 8.5.1 El profesor del grupo debe entregar a los alumnos los exámenes calificados, a más tardar diez días hábiles después de haberse realizado la prueba, de lo contrario el estudiante puede presentar el respectivo reclamo a la coordinación.
- 8.5.2 La pérdida comprobada de un examen por parte del profesor da derecho al estudiante a una nota equivalente al promedio de su aprovechamiento o, a criterio del estudiante, a repetir el examen.
- 8.5.3 El estudiante tiene derecho a reclamar ante el profesor lo que considere mal evaluado del examen, en los tres días hábiles posteriores a la finalización del plazo señalado en el inciso 8.4.1.
- 8.5.4 En el caso extremo de no ponerse de acuerdo el profesor y el estudiante en cuanto a la calificación del examen, éste último podrá apelar ante el Director de la Unidad Académica respectiva en los tres días hábiles siguientes, aportando una solicitud escrita razonada y las pruebas del caso. El Director de la Unidad Académica respectiva, con asesoría de la Comisión de Evaluación y Orientación, emitirá su resolución escrita a más tardar siete días hábiles después de recibida la apelación.

Para sugerencias y observaciones, dirigirse a la Oficina 01-OM, 25 metros al este de la Rotonda de Betania, frente al parqueo este de la Facultad de Letras, o bien por medio del casillero 53, Segundo Piso, Escuela de Matemática.

Prof. Marco Alfaro C.(malfaro28@hotmail.com, Tel. 22247051)