PROGRAMA CURSO: MA0560 COMPUTACIÓN Y MÉTODOS NUMÉRICOS

II Semestre, 2015

Datos Generales

Sigla: MA0560.

Nombre del curso: Computación y Métodos Numéricos.

Tipo de curso: Teórico.

Número de créditos: 4 créditos.

Número de horas semanales presenciales: 4 horas.

Número de horas semanales de trabajo independiente del estudiante: 8 horas. **Requisitos**: MA0550 Ecuaciones diferenciales para Enseñanza de la Matemática.

Correquisitos: No tiene.

Ubicación en el plan de estudio: VIII Ciclo.

Horario del curso: Martes 14:00 a 15:50 y Viernes 14:00 a 15:50.

Datos del Profesor

Nombre: Jesús Rodríguez Rodríguez. Correo electrónico: chuz.rod@gmail.com.

Horas consulta:

Sede de San Ramón: martes 10:00 a 11:30.

jueves de 9:00 a 10:00. viernes de 9:00 a 11:30.

Recinto de Tacares: martesy viernes de 13:30 a 14:00 y de 16:00 a 17:00.

1. Descripción del curso

Una de las discusiones más interesantes de los últimos tiempos es la relación que existe entre la enseñanza de la Matemática y la computación, como se afectan una a otra y en especial como será la enseñanza de la Matemática en el futuro, pensando en la utilización de las máquinas en su forma más apropiada en el aula.

2. Objetivo General

Que el estudiante de la enseñanza de la Matemática adquiera los conocimientos y destrezas necesarios, en el uso de los ordenadores con el propósito de que:

- Asuma una actitud crítica respecto a la Matemática necesaria de un mundo cada vez más informatizado.
- Reconozca en los métodos numéricos la herramienta que con frecuencia utiliza la Matemática aplicada.
- Reconozca la interrelación entre los métodos numéricos y los métodos analíticos.
- Vislumbre las posibilidades y ventajas del "aprender haciendo" y las formas de estas
- con la utilización del ordenador.
- Use el ordenador para explorar los resultados de los métodos numéricos.

3. Objetivos específicos

- Desarrollar y perfeccionar las habilidades para la resolución de problemas.
- Promover el pensamiento riguroso y la expresión precisa de escribir algoritmos que funcionen correctamente.
- Ejecutar el pensamiento analítico al subdividir los problemas en partes menores, y el de síntesis al construir procedimientos principales combinado con sub procedimientos.
- Reconocer la idea general de que uno puede inventar pequeños procedimientos que sirvan de material de construcción para elaborar soluciones a grandes problemas
- Reconocer más fácilmente, que raramente hay una única forma "óptima "de hacer algo, que difícilmente se da la solución a un problema la primera vez que se trata de resolverlo, que más bien, es un proceso de pensar, revisar y depurar la solución cuando se obtienen los resultados deseados.

4. Contenidos

Sistema de numérico de punto flotante y error de máquina:

Exacto

Truncamiento

Aproximado

Porcentual

Solución de sistemas de ecuaciones lineales:

Eliminación gaussiana.

Factorización LU.

Método de pivote.

Métodos iterativos.

Solución de ecuaciones no lineales:

Bisección.

Punto fijo.

Newton – Raphson.

Secante.

Interpolación

Interpolación de Lagrange.

Interpolación de Newton.

Interpolación de Hermite.

Interpolación por Spline.

Diferenciación y Reglas de Integración.

Diferenciación Numérica.

Reglas de integración de Newton – Cotes.

Integración de Romberg.

Aproximación de funciones con polinomios

Aproximación polinomial en la norma 2.

Reglas de Integración de Gauss.

Cuadratura gaussiana.

5. Metodología

El curso contemplará principalmente una participación expositiva por parte del docente, con la respectiva atención a las interrogantes que tengan los estudiantes en un momento específico.

6. Evaluación

Descripción	Porcentaje
Trabajos cortos	25
l Parcial	25
II Parcial	25
III Parcial	25
Total:	100%

Consideraciones sobre la evaluación

Cada parcial tendrá un 40 % para hacer en la casa, el cual lo defenderá ante el profesor. Si el estudiante obtiene una nota mayor o igual 7.0 gana el curso; si su nota es 6.0 ó 6.5 tiene derecho a realizar examen de ampliación el día 13 de diciembre

7. Cronograma

Semana	Actividades
Semana 1	Sistema de numérico de punto flotante y error de máquina.
Semana 2	Sistema de numérico de punto flotante y error de máquina.
Semana 3	Solución de sistemas de ecuaciones lineales.
Semana 4	Solución de sistemas de ecuaciones lineales.
Semana 5	Solución de ecuaciones no lineales.
Semana 6	Solución de ecuaciones no lineales.
Semana 7	Interpolación. I Parcial. (Temas de semana 1 a semana 6)
Semana 8	Interpolación.
Semana 9	Diferenciación numérica. Reglas de Integración Newton-Cotes.
Semana 10	Reglas de Integración Newton-Cotes. Extrapolación de Richardson.
Semana 11	Aproximación de funciones con polinomios.

Semana 12	Aproximación de funciones. Il Parcial. (Temas semana 7 a semana 10)
Semana 13	Aproximación de funciones
Semana 14	Reglas de Integración de Gauss.
Semana 15	Reglas de Integración de Gauss.
Semana 16	Repaso
Semana 17 III Parcial.	(Temas de semana 11 a semana 16)
Semana 18	Reposición. Ampliación.

La fecha de parciales se programarán por acuerdo entre los estudiante y el profesor en las semanas indicadas.

8. Bibliografía

- Scheld, Francis. Análisis Numérico. Libros McGaw-Hill de México, S.A. Colombia, 1972
- Richard L. Burden, Análisis Numérico, Grupo editorial México.
- David Kincaid, Análisis Numérico, McGraw-Hill, México.
- Francis Sheid, Análisis Numérico, McGraw-Hill, México.
- Errores y exactitud. Análisis Numérico, McGraw-Hill, México.
- Peter Henrici. Elements of Numerical Analys, Wiley, USA.
- G.I. Marchuk. Methods of numerical Mathematics, Springer- Verlag, USA.
- E.U. Cheney. Introduction to aproximation Theory, McGraw-Hill, New York.
- N.S.Bakhvalov. Method Numerical, Mir, Moscow.
- Elvis Hurtado. Introducción al análisis numérico, Universidad de Costa Rica.