Programa de Curso: MA0323 Métodos Numéricos I Semestre, 2016

Datos Generales

Sigla: MA0323

Nombre del curso: Métodos Numéricos

Tipo de curso: Teórico

Número de créditos: 4 créditos

Número de horas semanales presenciales: 5 horas

Número de horas semanales de trabajo independiente del estudiante: 10 horas Requisitos: MAMA0321 Cálculo Diferencial e Integral, MA0322 Álgebra Lineal.

Horario del curso:

Martes: 7 a 8:50, viernes de 7 a 9:50, San Ramón. Martes: 1 a 3:50, viernes de 1 a 2:50, Tacares.

Datos del Profesor:

Nombre: Jesús Rodríguez Rodríguez

Correo Electrónico: jesus.rodriguez@ucr.ac.cr

Horario de Consulta: A convenir.

Descripción del curso

Una de las discusiones más interesantes de los últimos tiempo es la relación que existe entre la matemática y la computación. Algunos problemas físicos, por ejemplo, conducen a integrales donde el integrando es difícil o imposible de calcular de forma analítica, o no se conoce explícitamente la función y solo se tiene un conjunto de datos discretos de la misma, este tipo de situaciones son afrontados mediante los métodos numéricos.

Objetivos Generales

- 1. Reconocer en los métodos numéricos la herramienta que con frecuencia utiliza la Matemática Aplicada.
- 2. Aplicar los distintos métods numéricos en la resolución de problemas.

Objetivos específicos

1. Resolver problemas mediante métodos numéricos, tomando en cuenta diferentes precisiones en las respuestas según el caso.

- 2. Aproximar raíces de funciones mediante el uso de métodos numéricos.
- 3. Aproximar funciones mediante el uso de técnicas de interpolación polinomial.
- 4. Calcular, numéricamente, integrales que no poseen representación analítica de sus primitivas.
- 5. Predecir los márgenes de error que se producen al utilizar métodos numéricos para la resolución de problemas.
- 6. Controlar los errores producto de las aproximaciones brindadas por los métodos numéricos.

Contenidos

- 1. Introducción a Scilab.
- 2. Sistema de numérico de punto flotante y error de máquina.
- 3. Solucion de sistemas de ecuaciones lineales: eliminación gaussiana, factorización LU, método de pivote y métodos iterativos.
- 4. Solución de ecuaciones no lineales: método de bisección, método de punto fijo, método de Newton-Raphson y método de la secante.
- 5. **Iterpolación:** interpolación de Lagrange, interpolación de Newton, interpolación de Hermite e interpolación por trazador cúbico.
- 6. Diferenciación numérica y reglas de integración de Newton: Diferenciación numérica, reglas de integración de Newton-Cotes, integración compuesta, fórmula de sumación de Euler-MaClaurin e integración de Romberg.
- 7. Mejor aproximación de funciones en la norma 2.
- 8. Reglas de cuadratura de Gauss.

Metodología

Las clases serán presenciales con seciones de exposición magistral y participativa, además, en las asignaciones se hará uso de software libre especializado computación científica en particular wplotsp y geogebra.

Evaluación

Descripción	Porcentaje
Primer Parcial	25 %
Segundo Parcial	30 %
Tercer Parcial	30 %
Tareas	15 %
Total	100 %

Consideraciones sobre la evaluación:

Las tareas se recibirán únicamente en clases el día asignado. La nota final (NF) es la suma correspondiente de los porcentajes obtenidos en los tres exámenes parciales y el proyecto de investigación.

1. Si $67.5 \le NF$ el o la estudiante aprueba el curso.

- 2. Si $57.5 \le NF < 67.5$ el o la estudiante tiene derecho a realizar examen de ampliación.
- 3. Si NF < 57.5 el o la estudiante pierde el curso.

Los exámenes de reposición se harán de forma oral y estarán a cargo de un tribunal formado por tres profesores, incluyendo al profesor del curso. No hay reposición de la reposición de ningún parcial.

Cronograma

Semana	Actividad	Observaciones
1	Introducción a Scilab.	
2	Sistema de numérico de punto flotante y error de máquina.	
3	Semana Santa	
4	Solucion de sistemas de ecuaciones lineales.	
5	Solucion de sistemas de ecuaciones lineales.	hasta aquí I parcial
6	Solución de ecuaciones no lineales.	I parcial
7	Solución de ecuaciones no lineales.	
8	Iterpolación.	Semana U.
9	Iterpolación.	
10	Iterpolación.	hasta aquí II parcial
11	Diferenciación numérica y reglas de integración de Newton.	
12	Diferenciación numérica y reglas de integración de Newton.	II parcial
13	Mejor aproximación de funciones en la norma 2.	
14	Mejor aproximación de funciones en la norma 2.	
15	Reglas de cuadratura de Gauss.	
16	Reglas de cuadratura de Gauss.	hasta aquí III parcial
17	III parcial	
18	Ampliación.	

Bibliografía

- 1. Biswa Nath Datta. Numerical Linear Algebra and Applications. 2nd ed, SIAM, 2009.
- 2. Endre Sülli and David Meyers. **An Introduction to Numerical Analysis**. Cambridge Unversity Press, 2006.
- 3. Richard L. Burden. Análisis Numérico. Grupo editorial México.