### Universidad de Costa Rica Sede de Occidente MA0540 Principios de Análisis I I semestre 2019

#### Datos Generales.

Sigla: MA-0540.

Nombre del curso: Principios de Análisis I.

Tipo de curso: Teórico. Bajo virtual

Número de créditos: 5 créditos.

Número de horas semanales presenciales: 5 horas.

Requisitos: Álgebra y Análisis II (MA-0304).

Ubicación en el plan de estudio: V semestre.

Horario del curso: Lunes de 1pm a 3:50 pm, Jueves de 1pm a 2:50pm.

Profesor: Héctor Barrantes González

hector.barrantes@ucr.ac.cr,

hectormbg@gmail.com

# Descripción del curso.

Este curso está dirigido a estudiantes de tercer año de la carrera de Enseñanza de las Matemáticas y que cuentan con conocimientos básicos de análisis en una variable. El objetivo general es introducir al estudiante en conceptos básicos de topología en  $\mathbb{R}^n$  y de análisis en varias variables.

En el presente documento encontrará información sobre los aspectos del curso, tales como objetivos, contenidos, evaluación y bibliografía, principalmente. Es su derecho y su deber, estar informado sobre lo que se espera que aprenda en este curso, así como sobre la manera en que será evaluado su aprendizaje. Se le sugiere leer con detenimiento esta carta y consultar sobre cualquier duda que tenga al respecto.

El aprendizaje de la Matemática requiere del dominio de los conceptos propios de la materia, así como de gran cantidad de práctica. Se debe poner especial énfasis en comprender los conceptos y en desarrollar las destrezas necesarias para lograr un manejo apropiado de los procesos lógicos, así como para la solución de los ejercicios. La responsabilidad de llevar el curso con éxito es compartida. De usted, como estudiante, se espera una actitud positiva que le permita llevar a cabo su tarea con la dedicación y el esfuerzo necesarios.

De parte del docente, en calidad de facilitador del proceso de aprendizaje, pondrá a su disposición sus conocimientos, así como el mayor empeño. Desde ya, se le desea el mejor de los éxitos durante este ciclo lectivo.

Con este curso se contribuirá a que el estudiante

- 1. Manipule en forma correcta los conceptos de topología en  $\mathbb{R}^n$ .
- 2. Calcule correctamente, límites de funciones en varias variables.
- 3. Calcule correctamente, derivadas de funciones en varias variables.
- 4. Aplique correctamente los teoremas relacionados con el diferencial de una función en varias variables (Regla de la Cadena, Teorema de la función inversa, Teorema de la función implícita.)
- 5. Calcule correctamente áreas y volumenes de cuerpos sólidos, utilizando integrales múltiples.

### Contenidos

#### Topología en $\mathbb{R}^n$ . (4-semanas).

- Repaso de teoría de conjuntos. Definiciones y ejemplos de unión de conjuntos, intersección de conjuntos, familias de conjuntos, diferencia de conjuntos, complemento de un conjunto, producto cartesiano, función, imagen inversa de un conjunto, distancia.
- 2. Estructura de  $\mathbb{R}^n$ : Producto interno. Normas en  $\mathbb{R}^n$ . Desigualdad de Cauchy-Schwarz. Desigualdad de Minkowski. Sucesiones en  $\mathbb{R}^n$ .
- 3. Conjuntos abiertos y cerrados: Identificación e interpretación geométrica de conjuntos abiertos y cerrados, teoremas relacionados con uniones e intersecciones de abiertos y cerrados.
- 4. Relación entre un punto y un conjunto: punto interior, punto frontera, punto de acumulación, punto de adherencia de un conjunto dado y teoremas relacionados.
- 5. Conjuntos compactos. Definición de conjunto compacto en  $\mathbb{R}^n$  como conjunto cerrado y acotado.
- 6. Continuidad: Definición de función continua por medio de un conjunto abierto.

7. Relación entre continuidad y compacidad: Imagen de un conjunto compacto bajo una función continua.

#### Límites y continuidad en varias variables. (2-semanas).

- 1. **Límites en**  $\mathbb{R}^n$ . Definición de límite, demostraciones utilizando  $\delta$  y  $\varepsilon$ . Propiedades de los límites (suma, diferencia, producto, división y composición.). Teoremas relacionados con la existencia del límite de una función dada.
- 2. Continuidad. Definición de función continua en un punto (por medio del límite).
- 3. Propiedades de las funciones continuas. Suma, diferencia, producto, división y composición.

### Diferenciación en $\mathbb{R}^n$ . (7-semanas)

- 1. Funciones de varias variables. función real de variable vectorial, función vectorial de variable real.
- 2. Geometría de las funciones reales de variable vectorial. Superficies cuadráticas en  $\mathbb{R}^3$
- 3. **Derivada direccional y derivada parcial.** Definición y ejemplos de derivadas parciales y direccionales de una función dada. Derivadas parciales de orden superior, gradiente de una función.
- 4. Campos vectoriales. Definición de campo vectorial, ejemplos de campos vectoriales (interpretación geométrica), campos vectoriales conservativos, teorema de las derivadas parciales de segundo orden para determinar si un campo vectorial es conservativo.
- 5. Diferencial en  $\mathbb{R}^n$ . Definición y ejemplos de diferencial como transformación lineal.
- 6. Propiedades del diferencial. Unicidad. Suma, diferencia, producto y división de funciones diferenciables. Forma matricial del diferencial (Matriz jacobiana). Relación entre el diferencial y las derivadas direccionales de una función dada, otros teoremas relacionados. Planos tangentes.
- 7. **Regla de la cadena.** Ejemplos de diferencial de una composición de funciones. Forma matricial.

8. Teorema de la función inversa. Teorema de la función implícita.

9. Extremos de funciones reales. Multiplicadores de Lagrange.

Integración en  $\mathbb{R}^n$ . (3-semanas).

1. Definición de suma de Riemann.

2. Integrales múltiples. Cálculo de áreas y volúmenes en varias variables.

Metodología

El curso contemplará la participación expositiva por parte del docente, con la respectiva atención a las interrogantes de los y las estudiantes. Se trabajará con las listas de ejercicios dadas por el profesor, con el fin de reforzar la comprensión de los contenidos vistos en clases. Comprenderá también la resolución de ejercicios en la pizarra, por parte de los estudiantes. Se evaluarán aspectos como: fluidez y claridad en la exposición de ideas. Manejo adecuado de los conceptos vistos en clase. Resolución completa de cada ejercicio

asignado.

Evaluación.

Se realizarán tres exámenes parciales con un valor de  $\frac{80}{3}$ % cada uno. A continuación se detalla las fechas de los tres parciales

1. Primer parcial: Lunes 29 de abril.

2. Segundo parcial: Lunes 3 de junio.

3. Tercer parcial: Lunes 8 de julio.

4. Ampliación: Jueves 18 de julio.

Se trabajará también con listas de ejercicios recomendados por el profesor, con el fin de reforzar la comprensión de los contenidos estudiados en clases. Se dedicarán algunas lecciones, a la exposición por parte de los estudiantes, de la resolución de ejercicios asignados por el profesor. Estos ejercicios serán tomados de las listas de ejercicios mencionadas anteriormente. Estas exposiciones tendrán un valor total de 20 %.

4

La nota final (NF) es la suma correspondiente de los porcentajes obtenidos en los tres exámenes parciales.

- 1. Si  $70 \le NF$  el o la estudiante aprueba el curso.
- 2. Si  $60 \le NF \le 70$  el o la estudiante tiene derecho a realizar examen de ampliación.
- 3. Si  $NF \leq 60$  el o la estudiante pierde el curso.

Los exámenes de reposición se harán de forma oral y estarán a cargo de un tribunal formado por tres profesores, incluyendo al profesor del curso.

No hay reposición de la reposición de ningún examen parcial.

#### Horas consulta

1. Miércoles: de 1 pm a 5 pm

2. Viernes: de 8 am a 12 md.

# Bibliografía

- 1. Apostol, Tom. Análisis Matemático. Barcelona: Segunda Edición. Editorial Reverté. 1986.
- 2. Apostol, Tom. Calculus. Volumen I. Barcelona: Editorial Reverté. 1997.
- 3. Apostol, Tom. Calculus. Volumen II. Barcelona: Editorial Reverté. 2010.
- 4. Bartle, Robert G. *Introducción al Análisis Matemático*. México D. F: Editorial Limusa. 1992.
- 5. C.H, Edwards. Advanced Calculus of Several Variables. Dover Publications Inc. 1995.
- 6. González, Carmen María. Análisis Real. Costa Rica: Editorial UNED. 1999
- 7. Marsden, Jerrold. Tromba J. Anthony. *Cálculo vectorial*. Cuarta edición. México. Editorial Prentice Hall. 1998.
- 8. Mena, Baltasar. Introducción al cálculo vectorial. México. Editorial Thomsom. 2003.
- 9. Pita, Claudio Ruiz . Cálculo vectorial. Mexico: Editorial Prentice Hall. 1995