UNIVERSIDAD DE COSTA RICA SEDE DE OCCIDENTE XS-0215 INTROD. A LA ESTADISTICA

Prof. Carlo Magno Araya

II Ciclo Lectivo 2002 Requisitos :MA-0225 Horas semanales : 5

Créditos: 4

PROGRAMA E INSTRUCCIONES GENERALES

1. Objetivo General

Este es un curso típico de Estadística Aplicada, cuyo objetivo es desarrollar en el estudiante la destreza y el criterio básico para el manejo estadístico de las variables biológicas, lo cual supone el tratamiento de las aplicaciones más frecuentes en el área de las Biociencias.

2. Metodología General

Cada tema se circunscribe a las aplicaciones más frecuentes en las Biociencias y se acompaña de un ejercicio que aparece en el Manual Respectivo. El estudiante resuelve la práctica como tarea y ésta se discute en clase. El profesor recoge las prácticas en la fecha prevista y las califica.

Evaluación

Se hacen tres exámenes exhaustivos y acumulativos, comunes para todos los grupos, que valen 30% cada uno. Esto se complementa con las prácticas y quices. La recolección de las prácticas en limpio puede ser individual o en pequeños grupos, a juicio del profesor, y éstas pueden calificarse en totalidad o por muestreo. Las prácticas solo se reciben en la fecha indicada por el profesor y promediadas con los quices valen el 10% de la nota de aprovechamiento del curso, que se calcula así:

Aprovechamiento:

Exámenes (3)......90%
Promedio de prácticas y quices......10%

Dado que los exámenes y las prácticas cubren toda la materia, los estudiantes con nota de aprovechamiento mayor o igual a 7,0 aprueban el curso. El estudiante con nota igual o superior a 6,0 pero inferior a 7,0; puede presentarse al Examen de Ampliación, que es TOTAL y en el cual puede obtener como máximo una nota final de 7,0.

4. Bibliografía

Cualquier libro de Estadística Descriptiva es útil para la primera parte del curso (capítulos I a VI); obviamente los especializados en el campo (Bioestadística, Estadística de la Salud, Epidemiología, etc.) son mas pertinentes; así por ejemplo todo lo que se refiere a mortalidad y morbilidad se encuentra solo en libros de Demografía, Epidemiología y Estadística de la Salud. Para la segunda parte del curso es apropiado cualquier libro introductorio a la inferencia estadística (Capítulos VII al X).

MOYA, L. Introducción a la Estadística de la Salud, Editorial U.C.R. Reimpresión, 2000.

PROGRAMA Y DISTRIBUCION DEL TIEMPO

CAPITULO I- INTRODUCCION. (5 horas).

Definición y concepto general de Estadística. Otras acepciones de la palabra. 1-1

Teoría Estadística y Estadística Aplicada. Estadística Descriptiva y Estadística Inferencial. 1-2 Ejemplos de Estadística Aplicada: Bioestadística, Estadística Demográfica, etc.

Estadística e investigación científica. El método científico y el papel de la Estadística. Etapas 1-3

del desarrollo de una investigación estadística.

Definiciones básicas: problema, objetivos, población finita e infinita, unidad estadística 1-4 elemental, característica, categorías, observación. Clasificación de las características según su naturaleza: cuantitativas y cualitativas o atributos.

Fuentes de datos. Métodos de recolección de datos. Cuestionario: objetivos, orden general, 1-5

preguntas abiertas y cerradas. Subregistro, sesgo de no respuesta, sesgo de medición.

CAPITULO II- DISTRIBUCIONES DE FRECUENCIAS Y PRESENTACION DE RESULTADOS. (5 horas).

Crítica, codificación y tabulación: conceptos generales. La distribución de frecuencias. 2-1 Categorías exhaustivas y mutuamente excluyentes. Frecuencia absoluta.

Construcción de distribuciones de frecuencias de características cualitativas. Cálculo de 2-2

proporciones en distribuciones simples y de doble entrada. (Cambios de base)

Construcción de distribuciones de frecuencias con características cuantitativas: arreglo 2-3 ordenado, amplitud general, intervalo de clase, número de clases, límites indicados y límites reales con variables discretas y con variables continuas (redondeo al dígito más próximo hasta para la edad).

Cálculo e interpretación de proporciones: sobre totales de columna, totales de hilera y gran 2-4

- Efecto de las clases abiertas y de las categorías "desconocido", "en blanco", "no responde", u 2-5
- Series estadísticas. Ejemplos de su utilidad en Biociencias (sexo, edad, lugar, tiempo). 2-6
- Esquema de presentación final de un trabajo científico: justificación; objetivos; material y 2-7 métodos; resultados: cuadros y gráficos; conclusiones y recomendaciones.

Formas de presentación de los resultados: en texto, semitabular y tabular. Diferencias y 2-8

limitaciones. Requisitos comunes a las tres.

El cuadro estadístico y sus componentes. Detalles sobre la construcción de cuadros, el 2-9 ordenamiento de la columna matriz. Cuadros generales y cuadros de resumen. Análisis de cuadros.

CAPITULO III- INDICADORES RELATIVOS (7 Horas).

Razones, proporciones y tasas: diferencias conceptuales. Limitaciones de los pequeños 3-1 números. Definición y requisitos de un indicador.

Ejemplos de razones y proporciones utilizadas con frecuencia en el área de la salud: razón de 3-2 masculinidad, habitantes por médico, mortalidad proporcional de menores de 1 año y de cincuenta años y más, porcentajes de cobertura, porcentaje de ocupación de camas, etc.

Tipos de tasas: brutas, específicas y ajustadas (concepto). Tasas anuales, población a mitad 3-3 del período. El riesgo relativo y su interpretación. El riesgo atribuible.

Natalidad: definición internacional de nacimiento, el registro de nacimientos, tasa bruta de 3-4 natalidad, tasa general de fecundidad.

Mortalidad: definiciones internacionales de defunción y defunción fetal, el registro de 3-5

defunciones, tasa bruta de mortalidad, tasas específicas de mortalidad: por edad, por causa, por lugar, por sexo. Tasas de mortalidad materna, fetal neonatal e infantil. Tasa de letalidad.

3-6 Morbilidad: incidencia y prevalencia. Fuentes de datos de morbilidad. Tasas específicas de morbilidad: causa y edad, causa y sexo, causa y lugar.

3-7 La Clasificación Internacional de Enfermedades, Traumatismos y Causas de Defunción:

descripción general, historia y aplicaciones más frecuentes.

3-8 El censo de población. Disponibilidad de estimaciones y proyecciones anuales. El concepto de crecimiento de la población.

CAPITULO IV- ELEMENTOS DE PROBABILIDAD. (5 horas)

4-1 Concepto y definiciones de probabilidad: subjetiva, estadística y clásica.

4-2 Propiedades básicas de la probabilidad. Tabla empírica de probabilidad. Probabilidad complementaria. Propiedad básica de multiplicación. Permutaciones.

4-3 Eventos no excluyentes. Probabilidades conjuntas y marginales. Tabla de contingencia.

Probabilidad condicional. Independencia

PRIMER EXAMEN: 18 de septiembre (CAP-1-4)

CAPITULO V- ANALISIS GRAFICO. (6 horas)

- 5-1 Importancia y utilidad de los gráficos como medio de análisis. Detalles sobre su construcción: Título, escalas, corte de ejes, etc. Uso inapropiado de la computadora.
- 5-2 Selección del diagrama adecuado para cada tipo particular de serie estadística:
 - a) Gráfico lineal aritmético (explicarlo) y semilogarítmico (mencionarlo)

b) Gráfico de barras simples verticales y horizontales.

- c) Gráfico de barras compuestas y de barras comparativas
- d) Gráfico de bastones horizontales y verticales.

e) Gráfico de barra 100%

f) Histograma y polígono de frecuencias. (Con clases de igual y de desigual amplitud; con límites de clase y con puntos medios).

CAPITULO VI- MEDIDAS DE POSICION Y DE VARIABILIDAD. (7 horas)

6-1 Propósito y utilidad.

- 6-2 Las frecuencias acumuladas (absolutas y relativas) y su interpretación. Cálculo e interpretación de percentiles. Ejemplos de uso de los percentiles en el análisis de variables biológicas: peso, talla, colesterol, etc. Estimación gráfica de percentiles (ojiva)
- 6-3 Medidas de tendencia central de un conjunto o población: moda, mediana o percentil cincuenta, y promedio aritmético. Cálculo directo y por la distribución de frecuencias: uso y cálculo del punto medio de clase. Interpretación, usos y limitaciones.

6-4 Efectos de los valores extremos. Distribuciones simétricas y asimétricas.

6-5 El fenómeno de la variabilidad y su importancia. Necesidad de las medidas de dispersión de un conjunto o población.

6-6 El recorrido o amplitud general y el intervalo intercuartil. Ventajas y desventajas.

- 6-7 La variancia y la desviación estándar. Cálculo e interpretación de la desviación estándar. Cálculo directo y por la distribución de frecuencias.
- 6-8 El coeficiente de variación: definición, utilidad, cálculo e interpretación.

CAPITULO VII- DISTRIBUCIONES DE PROBABILIDAD (5 horas)

7-1 Concepto general de distribución de probabilidad. La distribución de probabilidad de una variable discreta. Distribución acumulada. Cálculo de probabilidades con una distribución acumulada. Percentiles

7-2 La distribución Normal. Características y parámetros. La Normal estándar. Uso de la tabla.

Aplicaciones.

7-3 La distribución de Poisson. Características y parámetros. Aplicaciones. Uso de la tabla.

7-4 La distribución Binomial. Características y parámetros. Aplicaciones. Uso de la tabla. Aproximaciones a la Binomial cuando la tabla no alcanza.

7-5 Aproximación a la Binomial por Poisson. Criterio de decisión: (np<5 o nq <5; n muy grande).

7-6 Aproximación a la Binomial por la Normal. Criterio de decisión: (np y nq > 5); n muy grande).

SEGUNDO EXAMEN: 23 de octubre (CAP- 1-7)

CAPITULO VIII- ELEMENTOS DE MUESTREO Y ESTIMACION. (7 horas)

8-1 Inferencia estadística. Población y muestra. El censo y los estudios por muestreo, justificación. Conceptos teóricos de: parámetro, estimador, error de muestreo y sesgo de selección. Condición de Infinito de las poblaciones biológicas.

8-2 Parámetros, estimadores y estimaciones. Los estimadores como variables.

8-3 El muestreo simple al azar sin reemplazo en poblaciones infinitas. Uso de la tabla de números aleatorios.

8-4 Estimación de punto del promedio, de la desviación estándar y de una proporción. El error estándar del promedio y de la proporción, concepto y cálculo para poblaciones infinitas.

8-5 El teorema del límite central. Estimación por intervalo de un promedio y de una proporción

cuando la muestra es suficientemente grande y de una población infinita.

8-6 Cálculo del intervalo de confianza para un promedio cuando no se conoce la desviación estándar de la población y la muestra es pequeña (n<30). La distribución de t de Student, características y uso de la tabla.

Factores no estadísticos que pueden influir en el tamaño de la muestra. Cálculo del tamaño de la muestra para la estimación de un promedio y de una proporción en poblaciones infinitas. Diferentes formas de aproximar la variabilidad de la población en el área de Biociencias: (suponiendo distribución normal o variancia máxima; por los valores de referencia, por otras investigaciones).

CAPITULO IX - PRUEBAS DE SIGNIFICANCIA (10 Horas)

9-1 Correspondencia entre la hipótesis de investigación (de igualdad o de desigualdad) con las hipótesis estadísticas (nula y alternativa). Necesidad en Biociencias de utilizar como alternativa la hipótesis de diferencia en cualquier sentido. (prueba bilateral).

9-2 Tipos de error. Probabilidades de error. Probabilidad de que la diferencia se deba al azar. Nivel

de significancia. Procedimiento general para la prueba bilateral de significancia.

9-3 Prueba bilateral de significancia para el promedio y la proporción con una muestra suficientemente grande o conociendo la variabilidad de la población.

9-4 Prueba bilateral de significancia para el promedio con una muestra pequeña (n<30)

desconociendo la variabilidad de la población (t de Student).

9-5 Prueba bilateral de significancia de la diferencia entre los promedios de dos muestras suficientemente grandes con la misma variabilidad o diferentes o conociendo la variabilidad de la población.

9-5 Prueba bilateral de significancia de la diferencia entre los promedios de dos muestras

pequeñas (ambas <30) desconociendo la variabilidad de las poblaciones; pero suponiendo que tienen la misma.

9-7 Prueba bilateral de observaciones pareadas.

9-8 La prueba de homogeneidad para las proporciones de dos o más muestras. Características de Chi-cuadrado, uso de la tabla.

CAPITULO X - ASOCIACION ESTADISTICA Y REGRESION LINEAL (8 horas)

- 10-1 El concepto de causalidad y el de asociación estadística. Relación entre dos características con base en una muestra: asociación y correlación. Análisis multivariado.
- 10-2 Asociación entre dos características cuantitativas aleatorias. El diagrama de dispersión y su interpretación.
- 10-3 Cálculo e interpretación del coeficiente de correlación lineal simple. Prueba bilateral de significancia. (p = 0)

10-4 La prueba de independencia de chi-cuadrado.

- 10-5 Relación lógica de dependencia entre dos variables. Variable dependiente y variable independiente. Interpretación del diagrama de dispersión.
- 10-6 Concepto de regresión. El modelo de regresión lineal simple. Supuestos básicos. Interpretación de la ecuación.
- 10-7 Ajuste de la recta de regresión por el método de mínimos cuadrados. Sólo las fórmulas derivadas).
- 10-8 El coeficiente de regresión y su interpretación. Limitaciones de la interpretación de la intersección cuando se trata de variables biológicas.
- 10-9 El coeficiente de determinación, propósito, cálculo e interpretación.
- 10-10 Usos y limitaciones de la ecuación de regresión.

TERCER EXAMEN: 20 de noviembre (CAP- 1-10)