

PROGRAMA CURSO: ALGORITMOS Y ESTRUCTURA DE DATOS

I Semestre, 2015

Datos Generales

Sigla: IF-3001

Nombre del curso: Algoritmo y estructura de datos

Tipo de curso: Teórico-Práctico

Número de créditos: 4

Número de horas semanales presenciales: 8

Número de horas semanales de trabajo independiente del estudiante:

12

Requisitos: IF-2000 Programación I

Correquisitos: N/A

Ubicación en el plan de estudio: III Ciclo

Horario del curso: K: 17:00 - 20:50. V: 17:00 - 20:50

Suficiencia: Sí **Tutoría**: Sí

Datos del Profesor

Nombre: Mci. Alejandro Ulate Campos

Correo electrónico: aulatec@gmail.com // alejandro.ulatecampos@ucr.ac.cr

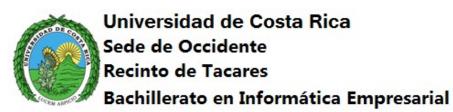
Horario de consulta: |: 17:00 - 21:00

1. Descripción del curso

En este curso se analiza en detalle el concepto de algoritmo, así como de sus propiedades. Se analiza la fuerte relación entre algoritmos y estructura de datos. Se hace un recorrido por algunos de los algoritmos y estructuras de datos más importantes de la teoría de la computación y se determina qué tipo de problemas pueden ser eficientemente resueltos en un computador. El estudiante desarrollará la programación de los algoritmos.

2. Objetivo General

Introducir al estudiante a la abstracción de problemas mediante el uso de algoritmos y estructuras de datos básicas, para la solución de problemas computacionales.


3. Objetivos específicos

Al finalizar el curso el o la estudiante estará en capacidad de:

- a. Analizar la complejidad y el orden de duración de un algoritmo.
- b. Estudiar las estructuras de datos básicas para la implementación de tipos de datos abstractas empleadas en aplicaciones computacionales.
- c. Fomentar la valoración de los algoritmos con base en el contexto de la solución computacional donde son utilizados.
- d. Implementar los algoritmos en un lenguaje de programación.

4. Contenidos

- 1. Introducción a la teoría de algoritmos
 - 1.1Estudio del concepto de algoritmo
 - 1.2Tiempo y orden de ejecución de los algoritmos
 - 1.3Algoritmos recursivos
- 2. Tipos de algoritmos
 - 2.1Concepto y características
 - 2.1.1 Algoritmos voraces
 - 2.1.2 Búsquedas exhaustivas
 - 2.1.3 Programación dinámica
 - 2.1.4 Algoritmos divide y vencerás
 - 2.1.5 Algoritmos probabilísticos
- 3. Tipos de datos abstractos
 - 3.1Conceptos básicos de los TDA
 - 3.2Pilas
 - 3.2.1 Concepto, características e implementación de una pila
 - 3.2.2 Pilas con arreglos
 - 3.3Colas
 - 3.3.1 Concepto, características e implementación de una cola
 - 3.3.2 Colas con arreglos
 - 3.4Listas
 - 3.4.1 Concepto, características e implementación de una lista
 - 3.4.2 Listas simples, circulares, dobles, dobles circulares
 - 3.4.3 Pilas, colas y colas de prioridad basadas en listas
 - 3.5Árboles
 - 3.5.1 Concepto y características de árboles
 - 3.5.2 Árboles binarios
 - 3.5.3 Balanceo de árboles

Informate y Participa!!

- 4. Procesamiento de hileras 4.1Concepto y características de comprensión y criptografía
 - 4.2Compresión de archivos
 - 4.2.1 Algoritmo Hoffman
 - 4.3Criptografía
 - 4.3.1 Algoritmos criptográficos
- 5. Algoritmos de ordenamiento
 - 5.1Concepto y características de los algoritmos de ordenamiento
 - 5.2Algoritmos elementales:
 - 5.2.1 Burbuja y burbuja mejorada
 - 5.2.2 Inserción
 - 5.2.3 Selección
 - 5.3Algoritmos complejos
 - 5.3.1 Quick sort
 - 5.3.2 Radix sort
 - 5.3.3 Merge sort
 - 5.3.4 Shell sort
- 6. Algoritmos de búsqueda
 - 6.1Concepto y características de las búsquedas
 - 6.2Algoritmos elementales
 - 6.2.1 Secuencial
 - 6.2.2 Búsqueda binaria
- 7. Algoritmos para grafos
 - 7.1Concepto y características de los grafos
 - 7.1.1 Dirigidos, no dirigidos, vértice, arista, entre otros
 - 7.1.2 Matriz advacencia
 - 7.2Recorridos
 - 7.2.1 Anchura, profundidad y ciclos
 - 7.3Conectividad
 - 7.3.1 No conexo, conexo, fuertemente conexo y completo
 - 7.4Árbol de expansión mínima
 - 7.4.1 Algoritmos de Kruskal v Prim
 - 7.5El problema de la ruta más corta
 - 7.5.1 Algoritmos Dijkstra y Floyd

Universidad de Costa Rica Sede de Occidente Recinto de Tacares

Informate y Participa!

Bachillerato en Informática Empresarial

5. Metodología

El curso es teórico práctico, donde el estudiante debe desarrollar problemas en grupo e individualmente, que permita poner en práctica los conocimientos adquiridos.

Las prácticas serán definidas por parte del profesor el cual dará únicamente los lineamientos generales a seguir. El o los problemas escogidos y su solución aplicada deben ser expuestos por los grupos respectivos.

6. Evaluación

Descripción	Porcent aje
Examen Parcial I	25%
Examen Parcial II	25%
Quices, Tareas Cortas ,	25%
exposiciones, otros	
2 proyectos	25%
programados	

Total: 100%

Consideraciones sobre la evaluación

- ✓ Los Quices se harán sin previo aviso en cualquier momento de la lección y no se harán reposiciones (excepto por las disposiciones establecidas en el reglamento de Régimen Académico Estudiantil)
- ✓ Las fechas de las evaluaciones del cronograma están sujetas a cambio dependiendo del avance de los temas vistos.
- ✓ Los rubros de calificación de cada una de las evaluaciones serán entregadas junto con la especificación de la misma.
- ✓ Las tareas programadas se realizarán individualmente o en grupos establecidos por el profesor.
- ✓ Las tareas programadas deben ir acompañadas de la respectiva documentación. No se recibirá la misma posterior a la entrega.
- ✓ Las tareas programadas deben ser entregadas a la hora y fecha indicadas en el enunciado del proyecto. El no entregar cualquier evaluación a tiempo provocará que se pierda el 100% de la nota. En casos muy justificados y previamente aprobados por el profesor se podrá recibir un trabajo hasta 24 horas después de la hora de entrega, en este caso perderán el 40% del valor del trabajo.
- ✓ Para los demás aspectos de evaluación no se aceptarán entregas después de la fecha y hora solicitada.
- ✓ Para las tareas programadas se realizará una comprobación individual para determinar la participación de los integrantes.

- Para todas las entregas sólo se recibirán aquellas cuyo contenido sea exclusivamente de la asignación respectiva.
- Mantener celulares en modo silencioso o apagado durante las lecciones.
- La aparición de un celular durante un examen o quiz anulará automáticamente el mismo.
- La comprobación de que alguna tarea, laboratorio, proyecto o examen es una copia hará que se apliquen las sanciones que contemple el reglamento de Estudiantil. Consultar Régimen Académico http://cu.ucr.ac.cr/normativ/regimen academico estudiantil.pdf.
- Se utilizará la plataforma moodle.ucrso.info

7. Cronograma.

	SEMANA		Тема
1	09 -	13	Presentación curso y entrega carta al estudiante
	Marzo		Tema 1: Introducción a la teoría de algoritmos
2	16 -	20	Tema 1: Introducción a la teoría de algoritmos
	Marzo		Tema 2: Tipos de algoritmos
3	23 -	27	Tema 2: Tipos de algoritmos
	Marzo		
4	30 – Abril	03	Semana Santa
5	06 -	10	Tema 3: Tipos de datos abstractos
	Abril		iema si mpos de datos abstractos
6	13 -	17	Tema 3: Tipos de datos abstractos
	Abril		·
7	20 -	24	Tema 3: Tipos de datos abstractos
	Abril		Semana Universitaria
8	28 -	01	Tema 3: Tipos de datos abstractos
	Mayo		1 Mayo FERIADO
9	04 -	80	Tema 4: Procesamiento de hileras
	Mayo		I Examen
			Entrega I Tarea Programada
1	11 -	15	Tema 4: Procesamiento de hileras
0	Mayo		
1	18 -	22	Tema 5: Algoritmos de ordenamiento
1	Mayo		
1	25 -	29	Tema 5: Algoritmos de ordenamiento
2	Mayo		
1	01 -	05	Tema 6: Algoritmos de búsqueda
3	Junio		

Universidad de Costa Rica Sede de Occidente Recinto de Tacares

	1.		D		
15	TOTII	ate 4	ar	LICI	pa!!

MAC IC	1	bacni	ilera	19	elema of Algorithis paragrafos
	4	Junio	00010	100	0100001001011101010001011011010
	1	15 - 1	19		Tema 7: Algoritmos para grafos
	5	Junio			
	1	22	- 2	26	Tema 7: Algoritmos para grafos
	6	Junio			
	1	29	- ()3	II Examen
	7	Julio			Entrega II Tarea Programada
	1	06	- 1	.0	Entrega de promedios
	8	Julio			
	1	13	- 1	.7	Ampliación
	9	Julio			

^{*}El cronograma está sujeto a cambios durante el semestre, los cuales serán informados durante las lecciones.

Bibliografía

Drozdek, Adam. Estructura de datos y algoritmos en Java. Thomson, Mexico. 2007. Allen Weiss, Mark. Estructura de Datos en Java. Addison Wesley. Madrid. 2000. Joyanes y Zahonero. Fundamentos de Programación - Algoritmos, Estructuras de

Datos y Objetos. Editorial Mc Graw Hill, tercera edición 2004.

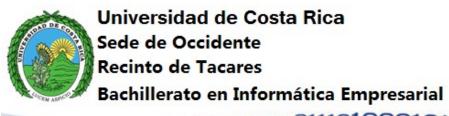
Joyanes, Luis. Programación en Java2. Algoritmos, Estructuras de Datos y Programación Orientada a Objetos. Editorial Mc Graw Hill, primera edición, 2002.

Aho, Hopcroft y Ullman. Estructura de Datos y Algoritmos. Editorial Prentice – Hall, primera edición 1998.

Aho, Alfred. Estructura de Datos y algoritmos. Addison Wesley, México. 1998.

Brassard y Bratley. Fundamentos de Algoritmia. Prentice-Hall, primera edición 1998.

Sedgewick, Robert. Algoritmos en C++. Editorial Prentice-Hall, primera edición 1995.


Martí, Ortega y Verdero. Estructuras de Datos y Métodos Algorítmicos – Ejercicios resueltos. Editorial Pearson Prentice – Hall, 2003.

Deitel y Deitel. Java: How to program? 5 ed. Prentice Hall. 2003.

Heileman, Gregory. Estructuras de datos, algoritmos, programación orientada a objetos. McGraw Hill. 1998.

Joyanes Aguilar, Luis. Programación en C++: Algoritmos, estructuras de datos y objetos. Mc Graw Hill. España. 2000.

Michael T. Goodrich; Roberto Tamassia. Data Structures and Algorithms in Java. 4 ed. John Wiley & Sons, Inc.

Informate y Participa!!