UNIVERSIDAD DE COSTA RICA SEDE DE OCCIDENTE CARRERA DE INGENIERÍA INDUSTRIAL

II 1015 SIMULACIÓN Profesor: Ing. Pablo Lizano Soto

Grupo: 01 Créditos:3

II Ciclo 2008

GENERALIDADES DEL CURSO

Horario: Miércoles 9 a.m. 11.50

DESCRIPCIÓN DEL CURSO

OBJETIVOS

Objetivo general

Aprender a modelar sistemas mediante técnicas de simulación y a valorar, críticamente, la validez de los modelos realizados.

Objetivos específicos

- Estudiar técnicas que permitan desarrollar modelos de simulación para representar apropiadamente sistemas de producción de bienes y servicios. Entre estas técnicas se encuentran las relacionadas con la caracterización y análisis de los datos de entrada al modelo, el análisis de los datos de salida de éste, el diseño de experimentos y las pruebas de calidad para los generadores de números aleatorios.
- Identificar la factibilidad para aplicar modelos de simulación a problemas de la realidad.
- Aprender un software para la modelación mediante simulación.

Contenidos:

Introducción

Enfoque de las técnicas de simulación

Utilidad

Ventajas y desventajas

Áreas de aplicación

Repaso sobre sistemas para ubicar los modelos de simulación

Sistemas y ambiente del sistema

Sistemas continuos y sistemas discretos

Componentes de un sistema

Modelo de un sistema

Tipos de modelos

Etapas de un estudio de simulación

Manejo de un lenguaje de simulación

Generación de números aleatorios y de variables aleatorias

Propiedades de los números aleatorios

Pruebas estadísticas sobre los números aleatorios

Técnicas de la para generar variables aleatorias

Análisis de los datos de entrada para un modelo de simulación

Pruebas estadísticas para verificar la condición aleatoria de los datos

Caracterización de los datos

Identificación de la distribución

Pruebas de bondad de ajuste

Estimación de parámetros

Verificación y validación de los modelos de simulación

Naturaleza estocástica de los datos de salida

Estimación de los parámetros de salida

Técnicas para la reducción de la varianza

Análisis de las salidas para determinar el número de corridas del modelo

Comparación y evaluación de diseños alternativos para el modelo de un sistema

Muestras independientes con varianzas iguales

Muestras independientes con varianzas diferentes

Comparación entre varios modelos

Diseño de experimentos

Análisis de varianza y otras técnicas

Fundamentos de optimización mediante simulación

ACTIVIDADES

Semana 1:

Introducción a la simulación. Aplicaciones, ventajas, limitaciones.

Semana 2:

Conceptos sobre sistemas. Sistemas y ambiente del sistema. Sistemas continuos y sistemas discretos Componentes de un sistema. Modelo de un sistema. Tipos de modelos.

Semana 3:

Modelos continuos. Dinámica de Sistemas.

Software de simulación Vensim

Semana 4:

Modelos discretos. Simulación de eventos discretos.

Software de simulación.. Promodel

Semana 5:

Datos de entrada al modelo. Caracterización Pruebas y Tests

Semana 6:

Primer examen parcial

Semana 7:

Generación de números aleatorios. Técnicas y Tests.

Generación de variables aleatorias. Técnicas

Semana 8:

Aplicaciones de la simulación.

Semana 9:

Análisis de los datos de salida. Validación del modelo.

Semana 10:

Análisis de los datos de salida. Validación del modelo.

Semana 11:

Experimentación. Conceptos y técnicas aplicadas a la simulación.

Semana 12:

Experimentación. Conceptos y técnicas aplicadas a la simulación.

Semana 13:

Comparación y evaluación de diseño de sistemas alternativos.

Semana 14:

Comparación y evaluación de diseño de sistemas alternativos.

Semana 15:

Segundo parcial

Semana 16:

Presentación de trabajos prácticos

Semana 17:

Presentación de trabajos prácticos

PROFESOR (A)

Nombre: Ing. Pablo Lizano Soto

Teléfonos:207-5879

E-mail: pablol@cariari.ucr.ac.cr

Licenciado en Ingeniería Industrial. Universidad de Costa Rica.

Estudios de Maestría en Telemática. Universidad de Costa Rica.

Recientemente ha dado Control de Operaciones y Simulación en la Carrera de Ingeniería Industrial de la Sede de Occidente, UCR.

Actualmente labora en la Rectoría, UCR.

METODOLOGÍA DE LA ENSEÑANZA/APRENDIZAJE

Para el desarrollo del curso se adoptará una metodología práctica, basada en la construcción grupal de un modelo durante el ciclo lectivo. Para lograrlo, es necesario contar con una herramienta informática (software) desde las primeras lecciones, ya que esta facultará al estudiante para realizar las diferentes pruebas sobre su propio modelo.. Deberá resolver situaciones mediante el lenguaje de simulación sobre temas como: pruebas al generador de números aleatorios, corridas de un modelo, análisis de los datos de salida, selección del número de réplicas del modelo, comparación de diseños alternativos para el modelo del sistema, etc.

	EVALUACIÓN
Exámenes parciales	30%
Proyecto	30%
Trabajo en laboratorio	30%
Participación en clase	10%
	DIDI IOOD A EÉA

BIBLIOGRAFIA

Banks, J. y Carson, J. S. <u>Discrete-event system simulation.</u> Prentice-Hall International.

Chung, C. Simulation Modeling Handbook. INDUSTRIAL AND MANUFACTURING

ENGINEERING SERIES

Baeceló, J. Simulación de sistemas discretos. Isdefe

Kirkwood, C. Systems Dynamics Methods. Arizona State University

Gordon, G. System simulation. Prentice Hall Inc.